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Abstract

This extended abstract outlines a project to build computer
programs that understand. Understanding a domain is
defined as the ability to rapidly produce computer programs
to deal with new problems as they arise. This is achieved by
building a CAD tool that collaborates with human designers
who guide the system to construct code having certain
properties. The code respects Occam's Razor, interacts with
a domain simulation, and is informed by a number of
mechanisms learned from introspection, the coding
employed in biology, and analysis.

Introduction

This extended abstract outlines a project to build computer
programs that understand.

Definition 1: Understanding a domain is defined as the
ability to rapidly produce programs to deal with new
problems as they arise in the domain.

This definition is proposed to model human
understanding (which I hold to be of the domain of the
natural world and extensions we have made into related
domains such as mathematics), and also accurately
describes biological evolution, which thus may be said to
understand what it is doing.

A program that can rapidly produce programs for new
problems is rather unlike the standard kinds of programs
that we usually see. They deal with contingencies that had
been previously planned for. We will describe both a new
programming method, and new style of program, in order
to accomplish our task.

Hypothesis 1: The property of understanding in thought
and evolution arises through Occam's Razor. (Baum, 2004,
2007)

By finding a concise genome that solves a vast number
problems, evolution built a program comprising a
hierarchic collection of modules that generalize-- that
know how to rapidly produce programs to solve new
problems. That genetic program also encodes inductive
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biases that construct a similar hierarchic collection of
modules within your mind that rapidly produce programs
to solve new problems.

As a result of conciseness and the structure of the
programs it requires, random mutations in the genome lead
to meaningful programs a sizable fraction of the time. For
example, a point mutation of a fly's genome may create a
fly with an extra pair of wings instead of halteres, or a fly
with an extra pair of legs instead of antennae (Kirschner
and Gerhart 2005). These are recognizably meaningful in
that they are functional in an interesting way. Evolution
thus rapidly searches over meaningful outcomes looking
for one that solves new problems'. That is, according to
our definition, evolution understands.

Another example within evolution is the coding of limbs
(Kirschner and Gerhart 2005). If asked to code up a limb,
human software engineers might attempt to separately
specify the structure of the bones, the muscles, the nerves,
and the blood vessels. If done that way, the program would
be huge, like standard engineering specs for machines such
as a jet aircraft, and it couldn't adapt to new uses, and it
couldn't evolve. A favorable mutation in the bone structure
would have to be matched by one in each of the other
systems to survive. Proponents of Intelligent Design would
have a point.

Instead, biology is much more concisely coded. The
bones grow out in a concisely and hierarchically specified
way. There is no separate detailed specification of exactly
how the muscles, nerves, or blood vessels grow. The
muscle cells perform a search, and attach themselves to the
bones, and grow so as to be functional in context. A
muscle cell that is being useful expands (which is why
rowers have big hearts). The nerves seek out muscles, and
learn how to be functional. The vascular system grows out
in a search toward cells that scream for oxygen. As a result
of this extremely concise encoding, if you take up new
exercises, your muscles adapt and grow in appropriate
ways, and if a mutation changes the genetic coding of the

1Language facilitates thinking in similar fashion. You can
come up with incredibly concise formulations of big new
ideas, just a sentence or several in natural language, that
grow out into detailed executables much like concise
specifications in the genome result in interacting searches
that robustly construct a limb, or like RBP finds a high level
plan and refines it through a series of searches.(Baum,
2008b)



bone structure, everything else adapts to make a functional
system, so mutations can easily explore meaningful
possibilities.

The same kind of conciseness is present in the genetic
coding for your mind. Enough initial structure is provided,
also called inductive bias, that a series of search programs
can build a hierarchic series of modules to solve new
problems.

Previous attempts to produce understanding programs
have mostly followed one of two paths. One path has been
purely automatic methods, such as direct attempts to
simulate evolution. This is hopeless because, while we may
already have or may soon have computational resources
comparable to those of the brain, we will never be able to
compete with evolution-- which ran through some 10*
creatures (Smith, 2006, footnote 95) (furthermore each
creature individually interacting with the world and thus
expensive to simulate). To evaluate other automatic
attempts, ask yourself what is enforcing Occam nature and
keeping the solution constrained enough to generalize to
new problems. An approach that can too easily add new
knowledge without adequate constraint can (and will)
simply memorize examples that it sees, rather than
generalizing to new problems. In my view, this is a
common flaw in AI/AGI approaches.

A second approach has been to craft such a program by
hand. I believe this is also hopeless for a variety of reasons.
First, a wealth of experience in computational learning
theory indicates that finding Occam representations in any
interesting hypothesis space is NP-hard. If finding Occam
software is NP-hard, it is no more likely to be susceptible
to hand solution than other huge NP-hard problems.
Second, a wealth of experience with solving AGI by hand
indicates it is hard. Winograd's SHRDLU, for example,
seemed like a particularly well crafted project, yet a few
years later he threw wup his hands and wrote a book
explaining why crafting an understanding program is
impossible (Winograd and Flores 1987). Third, when its
structure is examined (say by introspection and/or
attempting to program it) the program of mind (and also
the program of biological development) seems to contain a
large number of ingeniously crafted modules. At the very
least, figuring out each of these is a PhD dissertation level
project, and some of them may be much harder. Evolution,
which understands what it is doing, applied massive
computational resources in designing them. And the
Occam codings evolution found may inherently be hard to
understand (Baum, 2004 chap 6). Finally, the problems are
hard both at the inner level (figuring out ingenious,
concise, fast modules to solve subproblems) and at outer
levels of organizing the whole program. Humans are
simply not competent to write computer programs to deal
with hyper-complex domains in a robust way.

Hand crafting has at times sought to benefit from
introspection. A problem with this is that people do not
have introspective access to the internals of the meaningful
modules, which are hidden from introspection by
information hiding. Consider, for example, when you

invoke Microsoft Word. You know why you are invoking
it, and what you expect it to do, but you do not have much
idea of its internal code. The same is true of meaningful
internal modules within your mental program. However,
we appeal (based on observation) to:

Hypothesis 2: People do have introspective access to a
meaning-level (Baum 2007, 2004 chap 14), at which they
call meaningful modules by name or other pointer.

I use the term concept to convey a name (word) or other
mental construction that you might think that has some
meaning, i.e. that corresponds to a recognizable function in
the world, and module to convey the computational
procedure that would be summoned to compute a concept.
Thus we may think of concepts as names that invoke
modules.

You can state in words why you call a given module,
and you can give examples of concepts (for example,
inputs and outputs of the associated module). This is
incredibly powerful and detailed information, that we will
use to get a huge jump on evolution.

Note that the problem of finding an appropriate module
is distinct from that of finding an appropriate concept, so
this dichotomy factors the problem of producing code for
new problems. For example, executing a certain module
might create in a simulation model a corresponding goal
condition (namely, realize a concept). Agents are simply
modules that recognize patterns and then may take other
computational actions, as in, for example (Baum and
Durdanovic, 2000, 2002) . In the present work, patterns are
typically recognized in a simulation domain or annotated
simulation domain or model, that is seeing particular
annotations may be critical to the recognition of the
pattern. The recognition will frequently involve taking a
series of simulated actions on the model and then checking
for a pattern or condition (as in (Baum and Durdanovic,
2000). Agents when activated will frequently post
annotations on a model, which is how much of perception
proceeds.

The solution we propose, by which to construct
understanding programs, is thus based on the following
objectives and principles.

(1) Humans can not write the detailed code. As much as
possible it must be automated, but, the system must also
support as much guidance as possible from humans.

(2) The goal is to produce a program that will rapidly
assemble programs to solve new problems. To that end, we
have to ask what kinds of modules can be provided that
can be flexibly assembled. We also have to ask what kinds
of modules can be provided for guiding the assembly
process, for example by finding high level plans that are
then refined. We propose mechanisms for these tasks.
Assembling programs for new tasks from primitive level
instructions without a detailed plan is prohibitively
expensive. But if a program can be divided into half a
dozen tasks, and a program for each them assembled by
combining a handful of meaningful modules, the search
becomes manageable. Thus we need building systems and



building blocks and means of adapting to new contexts.

(3) The reason understanding is possible is that the
natural world (and relatedly, mathematics) have a very
concise underlying structure that can be exploited to do
useful computations. We embody this by providing domain
simulations. The domain simulations typically live in 3 (or
2) Euclidean dimensions, plus a time dimension, and
provide direct access to causal structure. All modules and
agents interact with the domain simulation (in fact, with
multiple copies, each agent may explore its own copy).
Thus all thought may be model/image based in a way much
more powerful than other systems of which we are aware.
This grounds all our computations, that is to say, will allow
us to choose modules that perform functions that are
meaningful in the real world.

All agent or instruction calls are with respect to a
particular domain simulation position. Everything is thus
context dependent, and agents can communicate by taking
actions on the internal model and by perceiving the model.
A caching mechanism detects when a module recursively
calls the same module in the identical position, and returns
a default value at the inner call, and thus enables concise
recursive coding without looping.

(4) Economics simulations as in Hayek (Baum and
Durdanovic 2000, 2002; Baum 2004 chap 10) are used at
multiple levels to implement the invisible hand and assign
credit so that components of the program all have to
contribute and survive in a competitive environment. This
greatly contributes to conciseness. Such economies also
have the property of efficiently caching the execution of
modules at each level of abstraction, greatly speeding
computation.

(5) Other encodings collectively called scaffolds are
modeled on those discovered by evolution or perceived by
introspection in ways to realize point (2) above. Scaffolds
promote conciseness, and provide inductive bias for
constructions. For example, scaffolds make great use of
search programs modeled on those used in the
development of limbs (or in computer chess (Baum 2007)).

We call the system Artificial Genie.

CAD Tool

The first step is to build a CAD tool with which humans
collaborate in the construction of code. A number of
module constructors are provided, which take as inputs
such things as an instruction set out of which to build new
programs, a fitness function and/or a definition of a state to
be achieved, and examples of a given concept, and return
a module computing the concept. This is in principle
straightforward to achieve by, for example, genetic
programming (or, which we prefer, running a Hayek or
other Economic Evolutionary System (EES)).

Once a module is constructed to compute a concept, the
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CAD tool also creates an instruction invoking the module,
and makes that available for inclusion in instruction sets.
Note that such instructions can be used in hand-written
code, as well as fed to module constructors. So users are
enabled to write code in terms of concepts, even though
they may be unable to write the modules computing the
concepts.

Note that, while above we said simulated evolution was
too slow, what is generally done is to try to simulate the
whole solution to a problem in one gulp. We are proposing
instead to apply EES's or other module constructors to
carefully chosen subproblems, and then build
hierarchically upward. If the module construction fails, that
is the module constructor is not able rapidly enough to
construct a satisfactory module to compute the concept, the
CAD tool also provides the opportunity to first construct
other concepts which may be sub-concepts useful for
computing the desired concept, the instructions for which
can then be included in instruction sets.

The CAD tool will be used to improve itself until it can
also learn from solved examples and natural language
descriptions of the solution.(Baum, In prep).

Simulation Model

Our code interacts with a domain simulation that is
analogous to mental imagery. This provides numerous
critical functions. First, by encoding the underlying causal
structure of the domain, the image allows modules to
generalize, to encode meaningful function. For example, a
simple physics simulation can describe what will happen in
any kind of complex system or machine built of physical
parts. Such are often easy to construct from ball and spring
models(Johnston and Williams, 2008). All generalization
ultimately derives from exploiting underlying structure,
which is provided by the simulation.

Many Al programs are based on a set of logical axioms
and logical reasoning, rather than incorporating a
“physics” simulation. If you work that way, however, you
can't readily generalize. Say I give you a new object, that
you haven't seen before. Since you don't have axioms
pertaining to that object, you have no understanding that
lets you say anything about it. Logic just treats names (say
of objects) as tokens, and if it doesn'trecognize a particular
token, it knows nothing about it. By contrast, if you have a
physics simulation, you can work out what will happen
when things are done to the object, when its rotated or
dropped, just from its physical structure. This ability to
generalize is essential to understanding.

Another problem with the logic approach is the frame
problem. With everything in terms of axioms, you have a
problem: if something is changed, what else is affected?
Logically, there is no way to say, unless you have specific
frame axioms, and then you have to do inference, which
also may be computationally intractable. This classic
problem paralyzed Al for many years. If you are working
with a physical simulation, this problem is bypassed. You



just propagate forward-- only things effected by causal
chains change.

Interaction with a simulation allows the computational
agents to be grounded, that is to say: to perform functions
that are meaningful in the real world. Second, the domain
simulation provides a medium by which different
computational agents can communicate, since agents can
both perceive (recognize patterns in) and take actions on
the domain simulation. Third, agents can utilize the
domain simulation to search to achieve goals. For example,
they can achieve subgoals in the context of the current
situation and the other agents. Robustness can be achieved
by partitioning problems amongst interacting, concisely
specified, goal-oriented agents. This is a key element of
how biological development achieves robustness.
(Development utilizes an analog medium rather than a
domain simulation.) The domain simulation naturally
biases in the spatial, temporal, causal structure that greatly
facilitates dividing problems into parts that can be
separately analyzed and then combined. Fourth, the
domain simulation provides an intuitive and interactive
mechanism for users (program designers) to input training
examples. Training examples can be entered as
configurations of the domain simulation (for example,
small local regions representing some concept) or as
worked examples (where, for example the program
designer inputs the example as if playing a video game)
(which may be accompanied by natural language
description of what is being done).

Relevance Based Planning

The power of using domain simulations is demonstrated
by our planning system. Our planner finds high level
candidate solutions by examining the mental image, where
each high level candidate solution is a path that would
achieve a goal if a number of sub goals (counter-factuals)
can be achieved. The planning system then orchestrates the
collaboration of those subprograms that are relevant to
achieve the sub goals. Subprograms or agents that are
attempting to achieve sub goals perform look-ahead
searches on the mental image, and these searches may
produce patterns indicating other problems that were not
previously anticipated, the perception of which invokes
other agents. Because the whole process is grounded by
interaction with the mental image, the system explores
those subprogram calls that are relevant to achieving the
goal. An example of the operation of the planning system
is discussed elsewhere in this volume (Baum, 2008a).

Like all the modules in Artificial Genie, the planner is
supplied as an instruction within the CAD tool that can be
incorporated into new modules or agents by automatic
module constructors or by program designers. To our
knowledge, this also is not a feature of any competing
systems. This enables the construction of powerful agents
that can invoke planning as part of their computation to
achieve goals. Powerful programs can be constructed as

compositions of agents by planning on the domain to break
goals up into a series of sub goals, and then building
agents to deal with the sub goals. An example of a Hayek
constructing agents that invoke planning instructions to
solve Sokoban problems was exhibited in (Schaul 2005).

Evolutionary Programming, Search, and
Scaffolds

Consider a search to find a program to solve a problem.

To do this by building the program from primitive
instructions will often be prohibitively expensive. One
needs appropriate macro instructions so that each
discovery step is manageable size: no individual search is
vast. Code discovery is only possible in bite sized portions.
Scaffolds provide big chunks of the code, and break the
full search down into a combination of manageable
searches.

As discussed in section 1, this is largely how biological
development is coded: as a series of tractable searches
(each cell performs a search to produce its cyto-skeleton,
mitosis invokes a search to build microtubules for
organizing the chromosomes, the nerves perform a series
of searches to enervate, the vascular system performs a
separate search, and so on. (Kirschner and Gerhart 2005))

Coding in terms of constrained searches is an incredibly
concise means of coding. As discussed in (Baum,
2004,2007) this is also the method used in computer chess.
A handful of lines of code (encoding alpha-beta +
evaluation function + quiescence) creates a search that
accurately values a huge number of chess positions.
Because the code for this is so concise, Occam's razor
applies and it generalizes to almost all chess positions.

One simple form of scaffold supplies much of the search
machinery, but requires that an evaluation function or goal
condition for the search and/or a set of actions that the
search will be over (which may generally be macro actions
or agents) be supplied to use the scaffold for a particular
problem. For example, the alpha-beta search from chess
can be simply modified in this way into programs for other
problems (like Othello) cf (Baum 2007). Another use of
such search-scaffolds would be to compose them into
larger programs in a way analogous to how development
builds the body out of a collection of interacting searches.
The use of search scaffolds should provide huge inductive
bias, greatly speeding the production of programs for new
problems. In other words, having such scaffolds will
provide understanding of the domain.

Another form of scaffold is used in the evolutionary
construction of programs. The scaffold here is basically
equivalent to a procedure, with slots (aka arguments) and
possibly also annotations respective to some or all of the
slots. One can build a program downward by starting with
a scaffold, and then constructing subprograms to fit into
each of the slots. The annotations may supply guidance as
to independent examples to be provided for training the
subprograms, or other guidance such as instruction sets to
be provided to module -constructors to build the



subprograms out of.

The point here is, the naive way to be able to rapidly
create a program for a new problem, is to have a set of
macros from which the program for the new problem can
be rapidly discovered because it is a 5 line program in
terms of the macros. Another way, however, is to have a
scaffold that builds all or part of the program by starting
from the top and building down: discovering programs to
fit into slots. The discovery of these subprograms may
involve running an EES, or invoking another scaffold. And
yet another way, is to have a scaffold like RBP that
interacts with the mental image to build a high level plan
and then to flesh it out into concrete code.

Evolutionary Economic Systems

The real economy is a powerful system in which billions of
different economic actors, who don't even know each
other and may not even share a common language, are
organized to collaborate. A complex program is like an
economy, with large numbers of parts that must work
together. The usual process of constructing a complex
program is like a command economy, with some human
programmers sitting like the Politburo and attempting to fit
everything together. As desired programs get more
complex, it becomes harder and harder to integrate
everything, and pieces are added that are
counterproductive, and many  opportunities  for
rationalization are missed.

Artificial Genie supplies an economic framework that
motivates all the pieces by simple rules that implement the
invisible hand, propagate price signals. Moreover, within
the created environment of a simulated economy, major
flaws that plague the real economy, such as the tragedy of
the commons and theft and the dead-weight loss of
taxation, are removed, leaving a perfect computational
economy. Since it is made available as a module
constructor, the economic framework can readily be
applied at each level of the computational hierarchy, both
as the simplest subprograms are built from instructions,
and as the overall system is integrated, to ensure efficient
and harmonious operation. So, a high level program will
be composed of economically motivated agents, each of
which itself may be a Hayek or other EES, composed of
economically motivated agents, rather like the US
economy is composed of corporations, each of which may
have many subcontractors. This hierarchic construction is
straightforward because each satisfactory module (often an
EES) that is found, is encapsulated by the CAD tool as an
instruction, usable for constructing later agents and
programs.

Many problems can only be solved after performing a
search. For example, deciding on the best move in a chess
position typically requires a search; likewise planning
problems, optimization problems, even problems of
perception such as recognizing some pattern in one's
environment or sensory input, almost all require searches.

These searches will usually be intractably large if not
somehow focused. Extant automatic programming
methods do not produce programs that search and hence
are limited in their application. Artificial Genie
incorporates an economic structure to automatically
construct search-programs, programs that when presented
with a task to solve, perform a search to find the solution.

Artificial Genie supports the building of perceptual
systems consisting of a collection of agents that perceive
patterns and post names of recognized concepts, that may
enable other perception or action. Such patterns will
typically be perceived in the simulation domain, and the
perception may involve taking one or more simulated
actions on the domain position followed by verifying a
condition or checking a pattern. The syntactical analysis of
(Hobbs 2004) is a model for such posting of concept labels
that enable other conclusions, except that we have added
economic structure and interaction with a simulation
model. The whole program, from perception through
decision, is economically evolved to be concise, efficient,
and meaningful, so that such perceptual agents will only
survive when they are later relied upon by agents earning
reward from the world.

The economics naturally incorporates a smart caching
mechanism, by which subprograms that initially require
extensive computation, become fast and automatic in most
circumstances. Concepts are frequently given a definition
in terms of other modules, rather than an explicit algorithm
to compute it. Frequently a concept may be defined in
terms of a condition is to hold or be achieved (which may
in fact involve achieving multiple sub-conditions). You
then have to use a module constructor to construct a
program that achieves that condition (or recognizes when it
holds). The module constructor will typically produce a
search-EES. This search-EES caches into agents, methods
that work rapidly in certain classes of positions. When the
module is called, the search-EES cache will retrieve a
solution rapidly, provided one is available. However, if the
search-EES fails (ie no agent bids, or no solution is found)
the system may return to the definition, and attempt to find
a solution by a more extensive search (creating new
agents) or other methods. If a solution is then found, the
search-EES may be extended with more agents, caching
the new solution. This is analogous to how you may have
to resort to definitions and a slower, conscious thought
process when confronted with a new situation, but as you
learn about the new situation, you cache methods for
dealing with it rapidly and unconsciously.

First Application

The above framework is to be built in the context of a
particular domain. Sokoban has been experimented with to
date, but a more practically interesting domain will be
next. The tools, once built for a given domain, will be
readily adapted to a next domain.



Sketch of Path to Cognition

The tools will then be used to build an inheritance structure
corresponding to human cognition. Thought, language,
and understanding are possible because we have a
collection of meaningful modules, organized in a
hierarchical fashion. One thing that is different about our
approach from other hierarchic ontologies, however, is that
in our view what is inherited are methods, procedures, that
interact with a simulation domain, execute on a simulation
domain, compose in a robust way using searches that
determine meaningful combinations grounded with respect
to the simulation domain.
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