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Our aim is to produce a focused crawler that, given one or a number of sample pages, will crawl to all similar pages
on the web as efficiently as possible. A key problem in achieving this goal is assigning credit to documents along
a crawl path, so that the system can learn which documents lead toward goal documents and can thus efficiently
search in a best first manner. To address this problem, we construct an artificial economy of autonomous agents.
Each agent buys and sells web pages and is compensated when it buys a goal page, when another agent buys the
current set of uncrawled web pages, or when future agents buy a goal page. The economy serves to push money
up from goal pages, compensating agents that buy useful pages. Inappropriate agents go broke and new agents are
created, and the system evolves agents whose bids accurately estimate the utility of adding pages to the search.
The system is found to outperform a Bayesian focused crawler in our experiments.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Multia-
gent Systems; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Search Process;
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1. INTRODUCTION

With established search engines indexing only about 15% of the web [Lawrence and Giles
1999], many authors have realized the need for topic-driven crawlers that can be taught to
find relevant pages with modest resources, c.f. [Steele 2001; Ester et al. 2001; Chakrabarti
et al. 1999]. A focused crawler takes as input one or several related web pages and
attempts to find similar pages on the web, typically by recursively following links in a best
first manner. Ideally, the focused crawler should retrieve all similar pages while retrieving
the fewest possible number of irrelevant documents.

At any given point in a best-first crawl, there is a set of pages already fetched, which
we call traversed pages, and a set of linked pages from which one must select the next
page to fetch. We call this frontier the corona. A variety of mechanisms have been
proposed to rank the pages in the corona, thus defining “best” in one’s best-first crawl,
including page similarity and popularity [Pant et al. 2002], evolutionary sets of neural
networks [Pant and Menczer 2002], Bayesian probabilities [McCallum and Nigam 1998],
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other word-counting heuristics (document count, term frequency (TF), term-frequency-
inverse-document-frequency (TF-IDF) [Lewis 1992]), maximum entropy [Nigam et al.
2000], reinforcement learning [McCallum et al. 1999; Menczer and Monge 1999], infor-
mation gain [Glover et al. 2002], goal-connectivity (context graphs) and back-crawling
[Diligenti et al. 2000], and semantic content [Diao et al. 2000].

As was noted by Rennie and McCallum [1999], the key problem is one of assignment
of credit. One must decide which links will lead to the best overall crawl. Optimization
may require sacrificing short term gains in order to follow links that lead in the direction
of multiple goal pages. One must be able to identify ancestors (grand parents, great grand
parents, etc.) of goal pages even though these may be on rather different topics than the
goal pages themselves. For example, to find papers on neural networks, one might wish to
find home pages of computer scientists, and to find these one might wish to reach home
pages of computer science departments [Diligenti et al. 2000].

In this paper we apply the Hayek Machine learning framework [Baum 1996; Baum
and Durdanovic 2000b; 2000a] to this problem. Hayek simulates an artificial economy of
agents that bid to take actions. The economy is constructed so as to assign credit to the
individual agents for their contribution to the performance of the system. As some agents
go broke and are removed from the system, and as new agents are created, the system
evolves, learning accurately to assign credit to intermediate states, and learning to chain
long sequences of agents to solve hard problems. In previous work, it has solved prob-
lems in Blocks World, Rubik’s Cube, and Rush Hour domains involving credit assignment
through sequences of many hundreds of actions. Because the economy is a framework
for handling assignment of credit among agents, the Hayek Machine framework is flexible
enough to incorporate agents using many different ranking mechanisms that cooperate on
a single focused crawl.

Section 2 describes the Hayek Machine and its application to focused crawling. Section
3 gives empirical results for Hayek and compares these to a simple Bayesian best first
crawler modeled on [McCallum and Nigam 1998] and to breadth first search. Section 4
describes some possible extensions of the model. Section 5 concludes.

2. THE ARTIFICIAL ECONOMY

Our economy consists of a learning machine, which we call the Hayek Machine, that inter-
acts with a world that it may sense and take actions on, and which makes payoffs when put
in an appropriate state. For the web crawling domain discussed here, the world consists of
the web, and we make payoffs to the system whenever it retrieves a goal page. The idea is
that if the economy is set up correctly, money will flow into the system when it achieves
goals, and will flow through the system to agents that helped the system reach these goals.

In this paper, we assume that goal pages can be recognized when retrieved and thus
focus on the problem of learning an efficient focused crawl. This follows the previous
work of Diligenti et al. [2000], who implicitly assumed that goal pages were sufficiently
similar to the user-submitted example pages that they would contain a sufficient number of
key words to be readily identifiable. We discuss the problem of identifying goal pages at
greater length in section 3, but for now note simply that the Hayek machine, as formulated
here, must be given a reward when it retrieves a goal page by some auxiliary program (or
possibly human feedback).

The Hayek machine consists of a collection of agents, each consisting of a computer
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program with an associated numeric “wealth”. The system acts in a series of auctions. In
each auction, the agents evaluate their programs, returning a bid. The high bidding agent
buys the right to take actions. It pays the auction price to the previous winning agent, takes
its action, collects any reward paid by the world, and then sells the right to take action in
the next auction. In the present paper, the action taken by the winning agent is simply to
add a page to the traversed set.

New agents are periodically created, typically as mutations of existing wealthy agents,
and added to the system. Also agents whose money falls below their initial allotment are
removed. A small tax is occasionally assessed, to remove inactive agents. The population
of agents, and thus the performance of the system, evolves.

The auction protocol allows discovery of long chains of agents that accurately value
states. In any auction, the high bidding agent will tend to be one that takes the world
toward a state of reward, and whose bid accurately estimates its expected pay-in. An agent
that does not take the world toward payoff will not be profitably able to bid high, and an
agent whose bid does not accurately estimate its expected pay-in will either die or soon be
outbid by a mutated version of itself that bids higher.

Such lengthy chaining has been observed in previous experiments on Blocks World,
Rubik’s Cube, and the commercially sold game of Rush Hour, where collections of agents
were evolved that accurately valued states for hundreds of actions or more before achieving
reward, c.f. [Baum and Durdanovic 2000b; 2000a]. If conservation of money and a certain
notion of property rights are enforced, then money flows in from achieving goals, and is
pushed back to compensate enabling agents. In those references and [Baum 1998] we
discuss at greater length the economic principles that stabilize performance of the system.

Note that, at least in principle, such auction protocols are capable of compensating
agents for multiple contributions. So, for example, an agent that adds a web page to the
search which has links pointing to several later goal pages could be compensated for the
total expected pay-in to the system. Note also that the protocol makes no insistence on
how the agents decide what to bid or what actions to take. Thus the evolution of the system
could in principle forge cooperation between agents using widely different criteria for de-
ciding when to bid or what action to take. For example, agents could use widely different
ranking mechanisms for deciding whether to add a page to the search set.

2.1 Hayek and Web Crawling

This section will describe the specific protocol we used to train Hayek on focused crawling
in the experiments reported. Non-critical features have been simplified.

Algorithm 1, Train_Hayek_Crawler, outlines the main steps used to train the set of
agents in the most common run configurations. A series of auctions and the actions taken
by auction winners create a focused web crawl, as detailed below. The system is trained
using a number of short auction sequences. Note that the system has no guidance if it is not
earning reward. Hence it is necessary to begin training with relatively simple examples.
Thus we begin by doing a back-crawl1 from goal pages, and start the training at pages
known to be one link from goal pages.

We support crawling where all links of a page are automatically fetched, as in [Diligenti

�

A back-crawl from a web page is done by submitting the URL of the page as the search string to a search engine.
Ad pages are removed from the result by checking the contents of each page found to make sure it points to the
specified URL.
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Algorithm 1 Train_Hayek_Crawler
1: Do a limited Google backcrawl to set up initial goal sets and connectivity information
2: [opt.] read_goalconnected_URLs()
3: obtain_initial_set_of_agents()
4: for auction_sequence=0..N do
5: difficulty = Select_Problem_Difficulty(difficulty, MA, hystlo, hysthi,):
6: (traversed_set, corona, number_of_auctions) = Select_Problem(difficulty, connectivity)
7: repeat
8: (best_agent, url) = Choose_Highest_Bidder(corona, agents)
9: if best_agent chose a virtual url from the corona /* resell url immediately */ then

10: virtual_agent = best_agent
11: Fetch_Web_Content(url)
12: best_agent = Choose_Highest_Real_Bidder(url,agents)
13: if best_agent == root_agent, then best_agent = New_Real_Agent(url)
14: [opt.] Pay_Immediately(best_agent,virtual_agent,. . . )
15: end if
16: if best_agent == root_agent, then best_agent = new_real_agent(url)
17: if best_agent is a real agent /* transform the world */ then
18: insert into corona all links from url not matched by entries in traversed_set
19: [opt.] fetch content of these links
20: end if
21: add url [opt. entire site of url] to traversed_set,
22: mark url in traversed_set as owned by best_agent
23: delete entries matching traversed_set from corona
24: [opt.] Pay_Immediately(best_agent,. . . )
25: until corona is empty or number_of_auctions have run or [opt.] url is a goal page
26: if payments were not made immediately, then pay_afterward(auction_history)
27: collect tax, remove childless unprofitable agents, allow wealthy agents to spawn
28: [opt.] Forget_All_Real_Web_Content() /* train virtual agents too */
29: end for
30: save_Hayek_agents();
31: save_goalconnected_URLs();

et al. 2000], as well as crawling where virtual agents, bidding on hyperlink information,
select individual pages to retrieve, as in [Ester et al. 2001; Rennie and McCallum 1999].
Thus two distinct types of pages can exist during the crawl. Initially a page has a URL and
one or more associated hyperlink contexts. These hyperlinks and their context define a set
of virtual features; i.e. features which describe a page but are available before the page
has been fetched. A page with only virtual features is a “virtual” document and may be
selected by virtual bidders who base their bid on their estimate of the desirability of a page
having those features. After content has been fetched one has a “real” document, with real
features (e.g. words), as well as virtual features. Real bidders, whose bids depend on the
presence of one or more real features, may then be able to submit nonzero bids for these
pages.

At any point in the forward crawl, there is a traversed_set of pages that have been visited,
and a set of pages in the corona, namely pages linked by pages in traversed_set. Each agent
in the population offers a bid to add some page in corona to traversed_set. This bid will
be zero if the agent does not wish to buy the page. The bids are maintained in an ordered
queue. In each auction, the highest bid is popped off the queue, the associated best_agent
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Possible snapshot after four auctions
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Fig. 1. Possible snapshot of page connectivity after four auctions of a forward crawl. Arrows show all hyperlinks
found in the traversed_set web pages. Changes arising from the third auction are in a dotted box. This auction has
moved one corona page into the traversed_set and 3 of the 4 hyperlinks in this page have added new destination
URLs to the corona.

wins the auction, and the associated page P is added to traversed_set. Pages linked by
P are added to corona. The winning best_agent pays its bid to the previous winner. If
page P is a virtual page, the best_agent must fetch web content for the page. If page P has
web content and is a goal page, the best_agent receives a reward. Lines 9-15 of algorithm
1 force immediate resale of virtual urls after their content has been fetched in order to
ensure that virtual agents receive proper feedback about their choices before the training
run terminates.

Figure 1 shows a possible snapshot showing the traversed_set and corona that have
been constructed after four auctions. Here the virtual pages are marked only with circles:
hyperlink information exists for them, but no page content has been retrieved. Squares
mark pages with additional real content.

Algorithm 2 Select_Problem_Difficulty ( out: difficulty; in: MA, hystlo, hysthi )
1: /* MA indicates cumulative successfulness and increases or decreases by a small step depending

on whether the previous auction sequence encountered a goal page or not. */
2: if MA > hystlo � difficulty, then ++ difficulty
3: if MA < hysthi � difficulty, then – – difficulty

If the system manages to consistently find goal pages during auction sequences, the
problem difficulty is increased (algorithm 2, Select_Problem_Difficulty) and training be-
gins with pages whose estimated distance to a goal page is higher. In practice, it was found
beneficial to dither between two distances during the transition to higher difficulties, as
governed by parameters

�������	��

and

����������
.

To select a problem, a random site was first chosen, and then a URL from that site,
as described in Algorithm 3, Select_Problem. Back-crawling was only used to set up the
initial goal-connected set. Thus the goal-connected set, and the pool of initial problems,
grew slowly in the crawls reported here. To guard against continually retracing the same
similar set of paths to reward, a lengthier auction sequence was forced every 500 auction
sequences.
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Algorithm 3 Select_Problem
input: difficulty, auction sequence number, goal connectivity information
output: traversed_set, corona, number_of_auctions

1: clear traversed_set, erasing old ownership information.
2: repeat
3: candidates = set of URLS whose best known connectivity to a goal page is difficulty
4: if too few candidates or too many attempts, then
5: candidates = randomly choose either URLs of unknown connectivity, or the set of one-

away URLs
6: end if
7: select a random site from those in candidates, then random url from that site.
8: until traversed_set defined by url has enough links to form a valid initial corona.
9: [opt.] fetch web content for the initial corona

10: Limit auction sequence to ����� ���	� _ 
�� _ ���������
�������� ������� �!���"� #$��%'&(
�� � � � � .
11: /* Intermittently substitute offset [defaults to zero] with a large value and set a flag to not stop at

the first goal page during the following auction sequence. */

Algorithm 4 Obtain_Initial_Set_of_Agents
1: /* Generate a unique root_agent, that bids zero for everything and takes default action in case

no other agent bids on a corona or URL, and that supplies a default mechanism to spawn new
agents. */

2: if restarting then
3: read_Hayek_agents() /* with complete bid information */
4: else
5: By default, select words from a page or dictionary according to information gain.
6: Other weighting schemes available were uniform, TF, TF-IDF, document count, informa-

tion gain, unbalanced correlation score (CORR_ub) [Weston et al. 2002] and differential
CORR_ub.

7: Initial bids of these agents are indeterminate, marking them as explorers.
8: end if
9: Attempt to assign a URL containing the words used for an agent as the “parent” url for the agent.

/* This URL will be used for mutating words of sufficiently wealthy agents */
10: [opt.] Generate some virtual agents, using connectivity, URL or link context information in

conjunction with word weights

Our bidding agents were defined by a discrete set of features, all of which had to be
present for the agent to submit a bid. Algorithm 4 (Obtain_Initial_Set_of_Agents) or a
variant is used to create the initial agents. The features defining the agent were chosen ran-
domly from a given page using a probabilistic weighting based on one of a number of algo-
rithms. Weightings we programmed included uniform, term frequency (TF, i.e. # of times
a word appears in some set of URLs), term frequency - inverse document frequency (TF–
IDF), document count (CORR_ub, # of documents containing the word) [Lewis 1992],
differential document count2 and information gain [Glover et al. 2002]. Typically, one

)
Document count was normalized to the range [0,1], following the unbalanced correlation method (CORR_ub)

used with considerable success in sparse recognition problems by [Weston et al. 2002]. The differential document
count looked at the difference of this normalized word occurrence between sets of connectivities * and *,+.- to
derive weights for words. It was reasoned that such agents should be particularly good in context * at driving the
system closer to goal pages.
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such weighting algorithm was chosen at random and the agent was then created using that
weighting to select the features. For example, when TF was used, words were chosen from
the page to be used as features with probabilitiy proportional to TF. In some runs, we used
only a single weighting scheme, as will be noted when we discuss empirical results.

In addition to the page-recognizing agents, a “root agent” was always available, and
bid zero in every auction. The root agent won any auction that did not attract a positive
bid, and when it won took the action of creating a new agent using features from some
page in the corona, so that this new agent was guaranteed to match this page. The root
then resold the world to this newly created agent. The system assigns ownership to URLs
in the traversed set (algorithm 1, line 22) which are used for compensation as discussed
below (c.f. algorithm 6, line 4.) The root agent owned the URLs of pages in the initial
traversed_set.

Each agent of wealth greater than an arbitrary threshold of ten times the goal page reward
used a procedure like algorithm 4 to create a new agent that is like itself but with features
added, deleted, or changed. Each non-root agent was assigned a parent agent which gave
it initial capital (so that it could bid) in exchange for a fraction of its profits, (as discussed
below, c.f. algorithm 6, line 5). In addition to single words, agents could choose features
based on words in the URL string (before, at, or after the site words), words near the
hyperlink text (3 words before, in, or 3 words following), and estimated goal connectivity.
When all features matched, an agent would bid.

At the core of the web crawl lies the priority-queue auction bidding in Choose_Highest_Bidder
(algorithm 5). We experimented with two different methods (algorithm 5, lines 17-21) of
assigning bids to agents. One method, described further in section 3.2, sets each agent’s
bid to a fixed value at the first auction in which it can bid. This is called the bid-epsilon
model because this bid is set to a value slightly higher than any competing bid, i.e. the
new agent is forced to submit a winning bid. As new agents were created, bids were thus
pushed up toward the highest profitable level.

The other method, called the bid-estimating method, is described in more detail in sec-
tion 3.3. Here we used a second-price auction, and agents estimated a Nash equilibrium
bid. Bid-estimating agents continually maintained and revised their bids.

A clear distinction is maintained between virtual bidders, pages and features versus their
real counterparts. When virtual documents are used, adding new links to the crawl frontier
has two steps: (i) a virtual bidder buys some hyperlink, based on virtual features, and
transforms the world by fetching web content for this page; (ii) a real bidder buys the page
now that real features are available.

The real bidder presumably has a better idea of the true worth of the page, and is able
to collect any goal page reward. The virtual bidder receives its positive feedback for a
good page by a high resale price, as well as any fractional reward money that is allowed
to pass back up the auction chain. To force equitable training of the virtual agents in short
auction sequences, a virtual agent’s page was always resold immediately, and if no real
agent submitted a bid, a new agent was created that matched and immediately bought the
new page at a low price.

Real web content could be fetched at several points in the algorithm. We chose to use a
stopword list (removing short words like the) but did not include stemming (so beach and
beaches were separate features). Some important side effects of fetching real web content
were:

ACM Journal Name, Vol. V, No. N, October 2002.



8 �

Algorithm 5 Choose_Highest_Bidder ( corona, agents )
output: single best_agent, best_url, seller_agent
/* the full priority queue was maintained only when necessary */

1: for all agent in agents do
2: for all url in corona do
3: if all features defining agent are in url, then insert (bid, agent) into priority queue
4: end for
5: end for
6: obtain the set of explorers (agents of indeterminate bid) and set of highbidders
7: for all agent in explorers � highbidders do
8: determine all urls in corona matched by agent
9: end for

10: /* generate a payoff [] matrix for matched urls */
11: for all urls in corona matched by any agent in explorers � highbidders do
12: Exploratory_Auction(explorer, corona, url) /* only real bidders bid here */
13: estimate payoff [url] using goal page reward, sell price and [opt.] worth of links in url)
14: undo any corona changes
15: end for
16: for all explorer in explorers do
17: if bid- � agent set, then
18: explorer.bid = highbidders.bid + �
19: else
20: use payoff [] matrix to set all initial explorer bids
21: end if
22: allow explorer to supplant or augment highbidders it they bid high enough
23: end for
24: best_agent = random selection amongst highbidders
25: best_url = select an URL matched by best_agent
26: seller_agent = random selection amongst owners of pages linking to best_url
27: Allow other highbidders to use the payoff matrix to estimate their own potential earnings and

thereby refine their own bids. No money changes hands during such virtual payoffs.

—all web content and virtual information was counted in a detailed set of dictionaries, and
dynamically updated at every change;

—virtual link information and estimated connectivities of any URL in the system could
also change whenever web content was fetched;

—in principle subsequent bids of any agent, for any page, could change.

Payment could be done immediately (after every auction) or after an auction sequence.
The sequence of payment followed the steps outlined in algorithm 6, Pay_Immediately.
The agent winning the auction paid the previous agent, and fetched a page. If the agent
matched multiple-pages, one was chosen randomly to be added to the traversed set.

The winner of an auction has three other agents that might be deserving of some ad-
ditional reward: the parent that spawned the winner, the agent that previously owned the
world, and a seller agent that owned a page with a hyperlink to the page the winner se-
lected. Three fractions (P, Q, and S respectively) governed such reward-sharing. In the
economic model, given enough auctions, resale prices alone will eventually be enough to
train a Hayek system. We will note when P, Q or S were non-zero in the empirical runs.

Payments were used to establish a valuation for the bought page P. A bid-estimating
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Algorithm 6 Pay_Immediately (. . . )
input: agent, seller, agents, auction_history, reward. . . three [0,1] kickback fractions:
P, Q, S
output: agents {all of which could potentially have gained or lost money}
/* Throughout transaction steps, separately track profit (based on money that actually
changed hands) and valuation (based on money that should have been paid). First-
and second-price auctions treat valuation differently. The final valuation is filtered to
produce an agent’s reward_factor. A self-estimating agent’s reward_factor is used to
set a reasonable bid. */

1: pay auction price to previous auction winner in auction_history
2: collect any goal page reward
3: pay ���������
	���� to the list of previous auction winners

/* payments form truncated geometric series */
4: pay ��������
	���� to the seller agent
5: evaluate net profit pay ������� 
�� �	� to parentage of agent

/* payments form truncated geometric series */
6: if using self-estimating agents, then
7: agent updates its time-discounted reward_factor to approach this valuation
8: agent bid is the reward_factor, less up to 2% for agents that are older /* Ties favor

new agents */
9: /* P, Q and R kickbacks also tweak the reward_factor maintained by those being

paid */
10: end if

auction winner updated a slowly-varying estimate of the valuation of P. The estimated
valuation was used to set the agent’s subsequent bid amount. For training purposes, more
experienced agents were assigned a small (up to 2%) bid reduction. This allowed “equally
good” new agents to refine their bids into realistic estimates of worth more quickly.

3. EMPIRICAL RESULTS

We experimented on the following two domains: finding beach volleyball pages and find-
ing corporate officers. Goal pages in the beach volleyball domain were defined as pages
including the words {beach, volleyball, fivb, behar}. A points-based judge of several com-
monly co-occurring words was used to define the board-of-directors goal page judge. The
volleyball problem was one which involves around 180 goal pages in a reasonably well
connected set of urls. A difficulty with this problem was that huge number of sports-
related pages could easily trap the system. Hockey, football, baseball and golf pages were
particularly prevalent within the web pages fetched.

We begin with three subsections that compare algorithms that fetch all links from any
chosen page automatically. This approach avoids the complexity of virtual documents, and
of how bids based on hyperlink content and surrounding text may affect different learning
algorithms. Section 3.1, presents results from standard Bayesian best-first and breadth-first
search algorithms that we use as the standard by which further work is judged. Figure 6 be-
low directly compares several variants of the Hayek scheme to Bayesian focused crawlers.

Later we will compare these runs with systems that do not automatically fetch all links,
but develop “virtual agents” that bid upon virtual documents to select unfetched but linked-
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to pages based upon virtual information only. All runs in this paper started off with very
few goal pages (15-18 for volleyball and 15-45 for board-of-directors) as returned from
a Google search and back-crawl. The back-crawl results determined the initial word and
document statistics, as well as supplying the initial selection of problem URLs.

In all Hayek runs in this paper, the number of agents in the population gradually in-
creased. Typically the run had fetched most of the goal pages by the time the population
consisted of a few hundred agents, but then, with multiple profitable agents spawning off-
spring, the population continued to increase. We capped the total number of agents at
between one and five thousand, depending on the run, and after the cap was reached re-
fused to allow creation except when other agents went broke and were removed.

3.1 Bayesian and Breadth-first reference crawls

We first describe results with standard Bayesian and Breadth-first methods that we will
then use as benchmarks to which we compare the Hayek results. Bayesian and breadth-
first searches are often used as reference points to compare the efficiencies of focused
crawlers, c.f. [Rennie and McCallum 1999; Menczer and Monge 1999; Diligenti et al.
2000].

The naive Bayesian crawl uses the probability that a page with a given set of features is in
the set of goal pages to decide which page to follow in a best-first manner. For this purpose,
one needs statistics giving the frequency with which words appear in goal pages, and the
frequency with which words appear in general pages. We thus kept continually updated
individual word and document counts. We followed the formulation of McCallum and
Nigam [1998] in calculating these probabilities using either binary word presence or the
actual word counts in pages to derive the estimate. Our Bayesian crawler was thus similar
to the standard focused crawler used as a comparison in [Diligenti et al. 2000] except that
our Bayesian crawler was potentially more powerful in that it updated its statistics during
the crawl as more goal pages were discovered. As is typical in web crawls, figure 2 shows
that a multinomial model which took into account the number of times a word appeared in
a page fared better than the binomial (present-or-not) model. All links of selected pages
were fetched and no virtual document features were in the dictionaries for Bayesian runs.

Often fewer than 50 goal pages were found within the first 20000 pages fetched. Con-
tinuing these runs typically required well over 100000 fetches before improving and find-
ing over 100 goal pages. Breadth-first searches required a similarly large number of web
fetches before retrieving a large number of goal pages. A breadth-first search starting at
a random one-away URL fared on par with the Bayesian methods for this well-connected
problem, and eventually picked up 180 goal pages after about 150000 page fetches. Ordi-
narily one expects breadth-first searches will fare much worse than Bayesian methods (e.g
[Diligenti et al. 2000]), but for the beach volleyball problem, generic sports pages were
statistically similar enough to fool Bayesian agents trained on a relatively small number of
goal pages.

3.2 Bid- � Agents

We next describe results using the Hayek system with bid- � agents. The bid-� model de-
termines the bids of agents by forcing the first-time bids of new agents to be incrementally
higher than the highest competing bid. Thereafter, an agent’s bid remains fixed at this ini-
tial value. An agent whose initial bid was too high was immediately unprofitable and thus
removed. As mutated and cloned versions of profitable agents are created, bids are pushed
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Fig. 2. Tracks show individual runs where Bayesian probability of being a goal page was used to choose links to
follow. All links from a chosen page were fetched. No virtual documents were used.

upward toward accurate estimates of value.
To create agents, we added a procedure that used a statistical score to select words from

seed urls to create or mutate agents (see description of algorithm 4). The system typically
used arbitrarily-assigned probabilities to select a weighting method, and then create agents.
Bid- � agents used uniform, TF, TF–IDF, document count or differential document count
rankings. The differential document count and TF-IDF rankings appeared to generate the
most reasonable agents for the volleyball problem.

Figure 3 shows the behavior of such agent sets with no virtual documents. While the bid-
� agent sets generally continued to improve steadily over the first 50000 web fetches, there
is large variation in the learning rate. By fetching all links of every selected url, we can
directly compare the performance of these agents with the results of the naive Bayesian
crawler. The appropriate comparison is between figure 3(a) and figure 2, both of which
report the number of goal pages fetched. We observe that becoming “trapped” in large
non-goal communities was less of a problem than with the Bayesian agents of figure 2. It
seems that the potential to radically change one’s bidding behavior is particularly helpful
in learning how to deal with training data that supplies few positive examples.

The reason for the variation in learning rate was that good agents disappeared, often
to be replaced by worse, but still profitable agents, before a similar agent gets created
later on to correct the situation. Eventually, the bid- � set of agents would correct a bad
set of agents and improve it, but this was a slow process. We also observed that the bids
of the best, usually-successful bidders in the runs of figure 3 were still much below the
constant goal page reward that we used. This indicates that the bid- � agent sets were
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(a) Fetched goal pages use a perfect goal page recognizer as soon as any pages are
fetched and added to the corona.
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(b) Recognized pages are those actually selected by some agent during an auction

Fig. 3. Each track shows an individual training run, plotting fetched (a) and recognized (b) goal pages. The Hayek
Bid-epsilon method was used to adapt agent bid values.
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still far from steady-state bids, even after several thousand short auction sequences. The
mutation-directed, bid- � approach of an agent’s bid to a local equilibrium value was too
slow to be practical.

Comparing the two graphs, 3 (a) and (b), one sees that there was often a lag between
when goal pages were fetched and added to to the corona and when these same pages were
actually recognized (i.e. added to the traversed_set by a winning agent.) This occurs be-
cause these auction sequences were short and preemptively terminated at the first selected
goal page. Slower training (alg. 2) and occasional longer auction sequences (alg. 3, line
11) could minimize the discrepancy between the number of fetched and recognized goal
pages.

The main effect of a slower training was to have the system retrace tiny variations of the
auction path, largely within the previously fetched urls, so that the agent set would typically
find the already fetched web pages before discovering new ones. This is a manifestation
of the exploration vs. exploitation trade-off [Pant et al. 2002]. By exploiting the currently
known web graph while cutting down on exploration the system will, eventually, recognize
most of the fetched goal pages. When training more slowly, the number of recognized goal
pages would usually lag the number of fetched pages by only 2-12 pages. The performance
in terms of web fetches improved, at the expense of run time.

3.3 Hayek bid-estimating agents

It seemed clear that a quicker way to hone in on appropriate bid values, particularly during
the first 20000 web fetches, would improve the time required to develop an effective set of
agents.

The equilibrium bid value approached by bid- � agents hovers around the point where
an agent is profitable and close to break-even. The slow approach of bid- � agents results
in a large amount of exploration as the system cycled through agents. To alleviate this
we adopted some ideas from economic theory and equipped each agent with a simple,
deterministic intelligence that allowed it to estimate its own “reasonable” bid value, based
on immediate rewards, and to refine this bid based on future rewards.

Economic theory [Davis and Holt 1993] suggests that a Nash equilibrium might be a
quick way to set up reasonably accurate initial bids. In such a state, bid variations by
any one agent decrease its profit. Each agent therefore kept a crude count of its successes
and failures, and could estimate its own “worth” and deduce a reasonable bid value (see
algorithm 6, pg. 9). The estimates were approximate, especially for short training runs,
since future rewards were not immediately added to the self-estimated worth. Although
our program provided us with system estimates of the value of links contained in a page,
agents usually ignored this information since initial runs showed no large, visible effect
of including such information. Presumably this will be useful if better feature sets are
implemented for the virtual agents.

In a first-price (pay-what-you-bid) auction the Nash worth of any one bidder is depen-
dent upon the actual bid values of all other agents in the system. The Nash-optimal bid in
a second-price auction, however, is to bid exactly the value of the page in question [Davis
and Holt 1993]. Such agents need not maintain estimates of how the other agents are
bidding. Instead the bid estimate is based only on the estimated immediate reward (goal
page or not) and on future returns. For this reason, we adopted a second-price auction
mechanism for sets of self-estimating agents.

In our implementation, money from reselling the world was passed to the previous
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Fig. 4. Tracks show individual training runs using Hayek agents that estimate their own bids. All links were
followed. Although virtual documents (and bidders) were allowed, selected urls were almost always chosen
based on real web content.

auction winner. This amount is known very quickly and used to adjust the agent’s self-
estimated bid. Reward kickbacks from future auctions were used as they became known to
further refine an agent’s self-estimated worth. If the auction terminated before links were
traversed, the future Q and S kickbacks (see algorithm 6) effectively had a value of zero,
additionally penalizing agents requiring longer paths to goal pages.

Figure 4 shows the number of fetched goal pages using bid-estimating agents when the
system is forced to fetch all links. We found that the self-estimating agents did indeed im-
prove quickly and uniformly. These agent sets also were permitted to include agents that
bid on virtual documents (i.e. unfetched documents, populated with virtual information
such as estimated goal connectivity, text surrounding various links to the url). Although
the agents in such a system were allowed to generate and use virtual agents, the fact that all
pages in the corona contained real web content meant that the agent sets quickly learned to
discriminate against purely virtual agents. However, the system determined that combina-
tion agents were important. For example, “volleyball” in a site known to be one-away from
goal page derived a higher bid than “volleyball” alone (i.e. not yet known to be one-away).

Using bid-estimating agents (figure 4) and fetching all links, both Q and S-style kick-
backs displayed fast convergence to a reasonable bid values. The inconsistent success of
the bid- � agents (figure 3) was much improved.
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Fig. 5. Tracks show individual training runs using a reasonable [slow] learning rate parameter and a variety of
reward-passage schemes. The x-axes have been offset for clarity. The “L” values indicate a fairly slow learning
rate, so the lag between fetched and recognized pages was small.

3.4 Learning behavior of bid-estimating agent sets

In this section, we report runs involving virtual agents, which do not automatically fetch
page content. Training virtual bidders for the volleyball problem is a harder problem than
that tackled by the previous agent sets. Virtual document bidding is expected to be most
useful when the system has progressed past the easily found pages into pages of unknown
or distant connectivity, or when the initial problem is not well connected (i.e. a set of
“competitive” web pages, with few interconnecting links). The fact that the previous fetch-
all-links algorithms did as well as they did is related to the fairly high connectivity of the
volleyball problem.

In our implementation, only a real goal page has the possibility of generating a goal
page reward for its buyer. Virtual bidders that won auctions never collected reward money.
Instead they bought a virtual document, retrieved its content and were forced to immedi-
ately resell the corona and obtain any added value of the real web content of this page in
the form of a (hopefully higher) auction payment. Once a reasonable learning rate was
determined, several hundred experiments were run to investigate different profit-passing
and bid-estimation methods (figure 5.) The success rate, for this problem, is comparable
to that obtained when all links were fetched (figure 4.)

An important factor determining the fast learning in figure 5 seems to be the mechanism
used to populate the initial set of agents and to spawn new agents later on. TF, TF-IDF,
document count and information gain were available, and in figure 5 information gain
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criteria [Glover et al. 2002] were usually used to create and spawn agents. The TF-IDF
was also a reasonably good mechanism.

We also verified that setting all P, Q and S factors to zero (allowing only market forces
to drive the system more slowly toward a local equilibrium) displayed consistently slower
learning behavior in the initial training stage. The results were, however, reasonably inde-
pendent of the actual profit-passing scheme used. It seemed that passing profit to the parent
agent (P), for mutation-based spawning of new agents [typically one word would be added
(or substituted) from an actual url associated with the spawning agent] was less important
in this web context than in other Hayek problems. Presumably this was because informa-
tion gain or TF-IDF was already a good or better method of agent creation. Passing profit
to a previous link owner (S) was effective. About as effective, and simpler to program,
was passing profit to the previous auction winner (Q). Historical closeness to goal was also
used in the reinforcement learning approach of [Rennie and McCallum 1999].

We note in passing that nonzero S partially simulates running Hayek using a different
economic model — namely one where agents buy pages and are compensated whenever
another agent buys a page linked from their page. By contrast to the previous Hayek work,
where there was only one commodity in the economy — namely the entire world, which
was sold in each auction– such an economy has multiple commodities for sale, as occurs
in the real economy.

3.5 Comparison of Methods

To facililtate comparison of results, we present again the Bayesian runs and some of the
Hayek runs in figure 6. The bid- � Hayek runs clearly improved upon the Bayesian runs,
and the bid-estimating Hayek runs improved again on the bid- � Hayek runs.

3.6 Performance of trained bid-estimating agent sets

In most applications of focused crawling, one will have an already substantially trained
system, and will then apply it. For example, one might have a system trained to find pages
on some topic, and use it to maintain one’s database as information on the web expands
or changes. Thus this section shows that the fully trained agent sets exhibit good crawling
behavior if stored and reloaded under different conditions. This allows one to begin with
a good set of agents and rapidly advance to difficult problems, continuing the training of a
good set of agents by improving the ability to tunnel to goal pages.

Figure 7 shows various restarted runs, using agent sets of varying quality. Within 5000
web fetches, a trained set of agents can do very well, not just fetching goal pages, but also
recognizing them and finding previously unfound pages. These runs used virtual docu-
ments and agents.

Various stages of training are shown. The highly-trained agent sets were able to recog-
nize 200 goal pages within the first 5000 web fetches, more than obtained in any single
training run. In practical terms, this means that an auction-based crawler continues to per-
form well for the task of maintaining or updating a larger known set of goal pages. Of
course, it may be possible to improve these results by adding more classes of features into
the agent sets. In this paper, our focus has been on the learning behavior given small start-
ing sets, but these results suggest that a Hayek-style crawler may also be useful for crawls
that continually refresh and update a set of already known pages.

We found it better to let the agent set evolve during such restarts and long crawls, rather
than to prohibit changes in the bids. The reason was that as more of the web was crawled,
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Fig. 6. Comparison of data from other figures. Bayesian monomial and Binomial runs (respectively light dashed
lines and sparse dark dashed lines) are copied from figure 2. Bid- � Hayek runs (solid lines) are copied from figure
3(a). Bid-estimating Hayek runs (dotted lines) are copied from figure 4, but to avoid further clutter we have taken
only the P=0.05, Q=0.2, S=0.1 runs from that figure.

distinct web communities would often be found that would unproductively trap any static
set of agents and bids, even a supposedly well-trained one. However, repeated failures
were noticed and corrected in an evolving Hayek machine. Typical offenders were fresh
encounters with generic news sites, e-mail lists, and generic sports sites. A more draconian
mechanism was used in the board-of-directors problem to cut short revisiting unproductive
sites.

3.7 Board-of-directors pages

We turn now to a very different problem. Searching for company boards of directors pages
presents a focused crawler with the more difficult task of learning how to tunnel from
one company to another company. The web graph is much less well-connected than the
volleyball problem. A simple, points-based arbiter of goal pages was used to define this
problem. For this study, the trustworthiness of the goal page judge was not an issue — in
fact, perhaps a quarter of the pages were not the actual board page, but something close,
and real board of directors pages were sometimes fetched and not recognized by our judge.

An algorithmic change to accommodate the much less connected problem was to black-
list an entire site from the corona after a single board of directors page was found. This
improvement could still fail: for example, toshiba.com had a board of directors page, but
thereafter the system was content to keep crawling amongst different toshiba.com internal
sites. A more sophisticated heuristic would improve such cases. Also, for this problem,
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Fig. 7. Tracks of individual crawls show recognized goal pages using various sets of Hayek agents of different
quality. Using previously trained agents, it is possible to retrieve large numbers of goal pages quickly, within the
first 5000 pages fetched from the web. All links were not automatically fetched: virtual agents were used in these
runs.

some pages in the initial Google back-crawl had no link pointing to them. Effectively these
pages were worthless for training, since our agents found no links to these pages either.

Other than the above changes, the focused crawl proceeded as for the volleyball prob-
lem. Although some experiments were done with the money-passing parameters, we again
observed that such variations had little effect on the success rate.

Training that targeted board of directors pages is shown in figure 8. The two groups
of runs differ in the rate at which training problem difficulty was increased (parameters in
algorithm 2). The slower problem scheduling ended up with starting URLs 2-3 links away
from a goal page and did worse than in the volleyball problems of figure 5. The lower
connectivity decreases the success rate of the crawl for runs which started under four links
away. More unproductive page fetches occur, on average, before the next new goal page is
found. The more efficient scheduling was presenting problems beginning 4-5 links away
from a goal page when the runs were stopped. The bid-estimating agents did better than
a multinomial Bayes crawl that, fetching all links, had selected 41 goal pages out of 91
fetched within the first 12000 page fetches.

We also ran many crawls that began with an initial connected set of 140-200 pages. The
pages recognized by agents increased vary rapidly, recognizing the first hundred recog-
nized pages within the first 5000 auctions. Up to 250 goal pages were retrieved in a single
restart run without any evidence of saturating the acquisition of new pages.

For this loosely-connected case, one would expect that automatically back-crawling goal
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Fig. 8. Tracks of individual training runs show recognized “board of directors” goal pages as a function of the
total number of pages fetched. Bid-estimating agents using virtual documents were used. The lower cluster of
runs used a different schedule of training from the upper cluster, as described in the text.

pages might be a particularly good way to quickly generate the more diverse training prob-
lems that this experiment shows is crucial. Along this vein, relearning the agent set from
scratch, but beginning with a more diverse set of problems, was also found to be of possible
benefit.

Another practical difference observed was that the runs of this report were done at two
sites, one with a T1 connection, and the other a home site with a standard cable connection.
For the officer-page problem, the home site did roughly 25% worse, and this was traced
to a higher fraction of bad pages. Rather than increase the 20 s page fetch timeout at the
home site, we present results from the site with a fast Internet connection (which also ran
a very large squid cache used in other crawling research). No such effect was observed for
the volleyball problem.

4. FUTURE WORK

Focused crawling using an auction based economy is a flexible mechanism. In spite of
considerable success, there is more fundamental work to be done to optimize the perfor-
mance of these algorithms. The improvements are roughly of three types: improving the
overall auction loop, improving the set of agents and features, and improving the economic
model. After such improvements have been investigated, it would also be appropriate to
address the scalability of the algorithm, as will be addressed below.

In the main auction loop, agent creation mechanisms and more sophisticated problem
scheduling were important. Repeated bad sites or bad choices of problem led to the auc-
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tion sequence being stuck in an unproductive subset of urls. Aborting extensive crawling
amongst a very small number of sites was found to be one effective mechanism to promote
crawling different sites. A reset mechanism to periodically force the problem difficulty
to low values would also be beneficial for the focused crawling problem. Back-crawling,
which is a very efficient way to expand a small set of URLs, was only used to set up the
initial goal-connected set. Back-crawls whenever any goal page was encountered could
easily have been done. The types of “virtual document” information we included could
be investigated. Optimization of stopword lists, stemming and hyphenation choices, and
stopped URLs were not investigated.

Another set of improvements involves adding more classes of features into the agent
sets. These optimizations simply involve allowing a more flexible set of features and virtual
features into the agent set: e.g., agents matching word n-grams, Bayesian probability levels
of being at various distances from a goal page, . . . . The auction model itself will weed out
the feature types fairly efficiently, as those agents created with the right kinds of features
profit and others go broke.

Identifying and increasing visitation of hub sites after analyzing the connectivity of the
growing web graph has been found beneficial elsewhere [Pant et al. 2002]. Within the
Hayek model, this can be accomplished with virtual features that correspond to several
levels of URLs that have been found to be hub sites; however, it would be more productive
to generate page features that would allow the agent set itself to learn how to recognize
pages likely to be hub sites.

Our simplistic agents using features with only an “And” operator could also easily be
made more flexible by allowing “Or”, “Near” and “Not” operators. Once virtual bidders of
sufficient quality are found, estimated values for links found in pages should be included
when setting the valuation of bid-estimating agents.

Conceptually, one should realize that the Hayek framework also allows the system to
learn heuristic algorithm features. For example, we programmatically stopped visiting a
site in the board-of-directors problem after a single goal page was found. A more flexible
approach, within the spirit of the economic model is to add bins for the current number
of visits or goal pages at a site as virtual features. By representing dynamic crawl state as
features, agents can learn to bid, or not bid in given contexts. In this work, we did this
when we created agents that mixed goal-connectivity features with word features.

On a more theoretical note, cooperative bidding and profit-sharing are mechanisms that
may lead to even more efficient and robust behavior in the economic model. In partic-
ular, Fagin’s rules [Fagin and Wimmers 2000] provide an attractive mechanism to form
subgroups of agents that collectively submit a higher bid for an URL, and share in the pro-
ceeds. Other bid-merging economic mechanisms are also possible, as long as one properly
addresses the “ownership” issues that arise in developing a collective decision.

After such improvements have been explored, it would be appropriate to experiment
with scaling the algorithm to a high bandwidth domain. We envision the current program as
useful for home use. As mentioned in section 3.6, one could train this Hayek system to find
pages appropriate to some interest of the user, and then run it in background to extract pages
not indexed by commercial search engines or to keep current as new pages of interest are
added to the web. The results reported on effectiveness of trained Hayek systems indicate
that it may already be adequately efficient for this use. Because we had this application
in mind, the current system is optimized for use on a relatively low bandwidth, where it
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has plenty of time for training per (slow) page-fetch. However, it would also be interesting
to explore optimizing the Hayek web-crawling program to a high bandwidth environment
such as might be faced by a commercial search engine. For such an application, it might be
important to speed up the learning by omitting or streamlining some of the more expensive
learning calculations.

5. CONCLUSIONS

An economic model can produce an efficient and flexible framework for focused web
crawling. The auction economy provides a framework in which a set of agents using widely
different classes of feature can together generate an efficient focused crawler. Agents bid-
ding on different feature sets develop and maintain an accurate evaluation of their own
worth. Agent sets bidding on combinations of different types of feature learn context-
dependent bidding strategies. The learning can be done efficiently even in cases where
the initial set of positive examples was very small. For this type of problem, informa-
tion gain and normalized word count [Weston et al. 2002] scores were found to be good
weighting mechanisms for agent generation. Particularly for the difficult case of few pos-
itive examples, we found a second-price auction economy that included time-discounted
reward/profit back-propagation worked well. Even using only rather trivial agents, we
achieved goal page recognition that surpassed the performance of naive Bayesian priori-
tizers on both the volleyball and board of director problems. Adding Bayesian and feature
types that others have determined to be empirically efficient, as well as efficient means to
generate plausible agents, can only improve the performance of the Hayek engine used to
power a focused crawl. The system works particularly well in what we expect to be its
main application: applying a previously trained economy to rapidly find un-indexed pages
and keep a database current as new topical pages are added to the web.

Acknowledgement: the authors thank the anonymous referees for many comments that
have greatly improved the presentation.
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