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Abstract

We study the problem of how a computer program can learn, by interacting with an environment, to return an
algorithm for solving a class of problems. We describe experiments with a learning system we call Hayek4.
Presented with a sequence of randomly chosen Block stacking problems, Hayek4 learns and returns a pro-
gram for a Post Production system. The program solves arbitrary block stacking problems. The program
essentially consists of about 5 learned rules and some learned control information. Solution of an instance
with � blocks in its goal stack requires the automatic chaining of the rules in correct sequence about

� �

deep.

1 Introduction

We study the problem of how a computer program can learn, by interacting with an environment, to return
an algorithm for solving a class of problems. This is a problem that humans are often good at. An example
can be seen in Blocks World, c.f. figure 1. Humans easily describe a procedure that can solve arbitrary size
instances. Rubik’s cube is harder, well known example. Humans, after playing with the cube and thinking
for a week, often learn so as to be able to solve a randomly-scrambled cube quickly.

This problem is formalized as reinforcement learning(RL)1 . In RL the learner interacts with an environ-
ment which it can sense and take actions on, and which makes “money” payments when a series of correct
actions puts it in the right state. The learner’s goal is to discover a strategy that earns money efficiently.
The literature discusses two approaches to RL. The first, called “value iteration”, attempts to learn an e-
valuation function mapping each state to an estimate of its value, and then returns the algorithm: take the
action leading to the state of highest value. This approach has had one striking success in Backgammon,
but this is apparently due to the fact that a linear evaluation function is effective in this domain2. Value
iteration appears essentially hopeless in domains with huge state spaces unless they have an extremely sim-
ple and learnable evaluation function3 . The Blocks World state space grows exponentially with the number
of blocks. Without hand coded features, but with algorithmic improvements designed to grapple with the
problem, TD learning, the main value iteration approach, could only find a specific block if under no more
than 2 other blocks3 . Given a useful hand coded feature, TD learning succeeds in solving about 8 block
problems4 , but not larger ones.

The second approach (known in the RL literature as “policy iteration”) attempts to learn a program
directly. Evolutionary programming methods can be applied here. However, the space of programs is huge,
and its fitness landscape is typically rough, so such methods are of limited applicability. Koza 5 applied GP
to the far simpler problem of solving a single instance of Blocks World, rather than producing an algorithm
to solve arbitrary BW instances . Given several hand coded features including “next block needed”, GP
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Figure 1: We present a series of randomly chosen Blocks World instances, gradually increasing the size as
the system learns. Each instance contains 4 stacks of colored blocks, with

� � total blocks and � colors. The
leftmost stack, stack 0, serves as a template only and is of height � . The other three stacks contain, between
them, the same multi-set of colored blocks as stack 0. The learner can pick up the top block on any but stack
0 and place the block on top of any stack but 0. The learner takes actions until it asserts “ ��� ��� ”, or exceeds��� �
	���
���� ��� actions. If the learner copies stack 0 to stack 1 and states ��� ��� , it receives a reward of � . If
it uses

��� �
	���
���� ��� actions or states ��� ��� without copying stack 0, it terminates activity with no reward.
Figure (a) shows the initial state for an example with ����� and � ��� . Fig. (b) shows the position just
before solution. The instance ends with the blue block on stack 1. Note the goal is to discover an algorithm
capable of solving random new instances. The best human-generated algorithm of which we are aware uses� �
	���
���� ��� actions.

succeeded in solving a single 9 block problem. Asked to produce an algorithm for solving random problems,
and given a powerful hand coded feature (“number correct”), GP succeeded in producing a program capable
of solving only instances with about 5 blocks4 . Similarly, Inductive Logic Programming solved only about
2 block instances6 .

We view Holland’s Classifier systems7 as a seminal approach to deal with searching the huge program
space. By using an economic model to assign credit to modules, it might be possible to factor the search.
By finding modules instead of whole programs, the combinatorial explosion might be mitigated. However,
Holland Classifiers have not been successful at solving complex problems either8 .

In a series of previous papers9 � 10 � 4, we have reported results on why Classifiers fail and how their prob-
lems can be corrected. In our view, there are two basic problems. First, their economic model is flawed,
which leads to misallocation of credit. We have corrected this by imposing an economic model based on two
general principles, conservation of money and strong property rights, which prevent these misallocations.
Second, the representation language used by classifiers seems insufficiently powerful. Many useful classifier
programs are unstable, since useful rules will go broke and be removed unless high bidding classifiers tend
to follow low bidding classifiers9 � 11, the exact opposite of what would be needed for Holland’s intuition7 of
“default hierarchies”. Although classifiers are in principle Turing complete12 , it is unclear whether classi-
fier systems remain computationally universal when one restricts consideration to configurations which are
dynamically stable. We address this representation problem by using a more powerful agent language.

Our first economic model, Hayek1, used simple agents, and because of the dynamic stability problem
could only solve large BW problems when given intermediate reward for partial progress9 . Our last e-
conomic model, Hayek3, used agents that compute S-expressions4 . This model of computation was not
Turing-complete, and so the system could not produce a program capable of solving arbitrary instances.
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It did, however, produce systems capable of solving random instances with hundreds of blocks. The stark
contrast between standard classifier systems, which have trouble forming chains more than a few classi-
fiers deep8, and Hayek1 and Hayek3’s ability to learn systems with stable chains several hundred agents
deep showed the critical importance of imposing an economic framework respecting property rights and
conservation of money.

Here we report experiments with Hayek4. Hayek4 uses agents that are written in a Post Production Sys-
tem. This language is Turing complete. Although Post proved computational completeness of his Production
systems almost as long ago as Turing and Church13 � 14, we are unaware of any previous papers studying the
automatic or evolutionary programming of Post systems. The system we describe here, Hayek4, evolves
collections of agents that solve arbitrary Blocks World Problems.�

2 will briefly review Post Production Systems.
�
3 will briefly review our economic construction.

�
4

will describe our experimental results.
�
5 is a conclusion.

2 Post Systems

This section briefly reviews Post systems, which are a Turing-complete model of computation. A Post
System consists of an axiom and a sequence of productions (also called rules). The axiom consists of a
string of symbols. The productions are of form ����� where � is the antecedent and � is the consequent.
� and � are each strings of symbols and variables, such that any variable appearing in the consequent
also appears in the antecedent. Computation proceeds by looking through the productions in order, until a
production is found whose antecedent matches the axiom, that is there is some instantiation of the variables
as strings of symbols making the antecedent identical to the axiom. This instantiation of the variables is
then substituted in the consequent, which replaces the axiom. One iterates this procedure, looking through
the productions in order to find a legal substitution, making the substitution, and replacing the axiom, until
no production matches, at which time computation halts.

Post proved that any formal system (e.g. any Turing machine) can be reduced to a Post system and
indeed even a Post system in canonical form, i.e. having a single axiom and productions only of the form��� � �
	 , where the � is a variable14 .

In this paper we discuss programs composed of a number of agents, organized into an artificial economy
as described in the following section. The agents are each composed of a number of productions. The world
is presented to the agent as the axiom, and the agent then computes as a Post system.

For example, in the Blocks World problem, the world is encoded as a string: � �
� � ��� � ��� � � � � where � is
either not there or a single symbol chosen from the set � ������������������� of colors, and ��� �!� �"� and � are each
strings of symbols chosen from the set � . Here � represents the block in the hand (or is missing if there is
no block in hand), ��� �!� �#� � represent respectively the stacks 0,1,2,3.

Our productions are strings over �$� � �%� � �%���&� � � � � � �'� ����()� �*� � � + � �-,/.10 ��21.�� � �$�������'3�� . Here � � ����� ���
(resp. � � �$������� ��� ) mean grab (drop) from stack 1,2,3; ( denotes “done” ending the instance, variables ,4.
match a string and variable + � matches only a single character. We use a greedy variable match where the
largest string that allows a match is chosen.

Examples of rules that have evolved include �5, � � �5, � � �5,76 � �5, � �8� ($� � and�5, � + � , � � �5, � � �5,76 � �5, �
+ � ,79 �:� ����� � � � . For more examples, and explanations of how they work, see
section 4.
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3 Economic Model

Our system, which we call Hayek4, consists of a collection of rules, and a collection of agents. Each agent
is composed of a sequence of rules from the collection, a wealth, and a numerical bid.

Computation proceeds in a series of auctions. In each auction, each agent computes its next action by
executing a Post-system with the world as initial axiom. The actions of the highest bidder are applied on the
world transforming it to the new state.

The winning agent in each auction pays its bid to the winner of the previous auction. If it solves the
instance and says done, it collects reward from the world.

After each instance, all agents are assessed a tax proportional to the amount of computation they have
done, in order to promote evolution of efficient agents. Also, any agent with less money than it was initiated
with is removed and its money returned to its creator. Any rule not used in some living agent, and any rule
that has not been applicable in the last 1000 instances is removed.

A number � is initiated as 0, and then raised as larger instances are solved, to be slightly larger than
the reward for solving the largest instances being presented. Each auction, any agent with wealth at least��� � creates a child, giving it an initial endowment of � . The child is a modified version of its creator, as
described below. The system is initiated with a single special agent called “Root”. Root does not bid but
simply creates random agents. At the end of each instance, each agent passes .25 fraction of its profit in that
instance, plus an additional increment of

�������
to its parent.

This structure of payments and capital allocations is based on simple principles. The system is set up
so that everything is owned by some agent, property rights are respected, and money is conserved. Under
those circumstances, if agents are rational in that they choose to make only profitable transactions, a new
agent can earn money only by increasing payment to the system from the world. The agents are not initially
rational, indeed they are random, but less rational agents are exploited and go broke.

We ensure that everything is owned by auctioning the world to a single agent. The guideline for all ad
hoc choices, e.g. the one quarter fraction of profit passed to one’s creator, is that the property holder might
reasonably make a similar choice if given the option. Creators are viewed as investors-in, (or alternatively
owners-of) their children. For example, endowing one’s child with � is reasonable since it will need
about this amount of money to bid rationally. We did not experiment with these various choices. Our
experience with past experimentation in related models is that within reasonable ranges performance is not
very sensitive to parameter values, and since runs are stochastic and take a day or more it is impossible to
optimize.

By contrast, such property rights are not enforced in most multi-agent systems. For example, Holland’s
classifiers have multiple agents active at once, so there is no clear title to payments from the world, which are
then typically divided among active agents. This is a recipe for “Tragedy of the Commons”, since all agents
want to be active when payment is expected, whether or not their actions harm the system. ZCS systems15

have only one action active, but decide which action wins the auction probabilistically, with probability
proportional to bid. This violates property rights by forcing agents to accept low bids for their property.
When we modify our system to choose the winning bidder probabilistically in this fashion, it immediately
breaks and can no longer form long chains of agents or learn to solve Blocks World instances larger than a
handful of blocks.

When property rights and conservation of money are not enforced, agents can profit at the expense of
the system. Evolution maximizes the interests of the agents. But a local optimum of the system will not
then be a local optimum for the agents. Thus the system can not converge to a local optimum. No wonder
you can’t form long chains of agents. The problems with Holland Classifiers and related models and the
necessity for imposing property rights and conservation of money are discussed in more detail in 9 � 10 � 4.

Our creation process for new agents/rules is as follows.
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Root:
creates agent with randomly between 1..4 rules
where each rule with p=0.5 is random (new rule)
or with p=0.5 is a randomly picked existing rule.

Wealthy Agent:
creates agent that is a modification of itself. To modify
repeat with exiting p=0.25 the following:
with p=0.3 it inserts a new rule
with p=0.3 it deletes an old rule
with p=0.15 it reshuffles rules
with p=0.15 it replaces an old rule with new rule
with p=0.10 it mutates an old rule.

insertion of a new rule:
with p = 0.25 a new random rule is created
with p = 0.75 an existing rule is picked

replacement of a rule:
with p = 0.5 a new random rule is created
with p = 0.5 an existing rule is picked

mutation of a rule
left side:
repeats with exiting p=0.25:
with p = 1/3 delete a symbol
with p = 1/3 insert a symbol
with p = 1/3 replace a symbol

right side:
repeats with exitting p=0.25
with p=0.25 delete a symbol
with p=0.25 insert a symbol
with p=0.25 replace a symbol
with p=0.25 reshuffle rules.

Brackets, i.e ‘‘(’’ and ‘‘)’’, are being used for structuring purposes
only and are neither inserted nor deleted.

Any new rule so created is inserted in the rule population.

This rule creation process was also not experimented with, simply picked ad hoc.
New agents are assigned a numeric bid using the “bid-epsilon” procedure9 : the first time a new agent

has a production that matches, the agent is assigned a bid that is � higher than all competing bids. The new
agent thus wins that auction, and its bid is then fixed. � was .01 in these experiments.
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4 Experimental Results on Blocks World

Hayek4 was trained by presenting random BW instances, with size chosen according to a distribution that
presented increasingly larger instances as Hayek4 learned to solve smaller ones. The distribution was as
follows. We present instances of size 1 until one instance is solved. Then we initiate ��� �

, and present
instances of size . with probability chosen from a Gaussian distribution around instances of size � . To be
precise, we let � � ��� ����� �

and choose . with probability � ��. � proportional to �$, � ��� ����� . �
� � � � � � . We

maintain a running estimate 	 ��

� � � ��� � of the fraction of the last 100 instances of size � that have been solved.
When 	 ��

� � � ��� ��� � � 6
9 we increase � by 1, and when 	 ��

� ��� ��� ��� � � 9 we decrease it by 1. This presents
larger instances as we learn.

After a day of computation on a 300 MHz Pentium II processor, Hayek4 learns a program capable of
solving arbtirary BW instances. The learned program solves random, new, 100-block instances in several
seconds. Fig 2 shows evolution of such a run. In this case, among the over 1000 agents present, agents
1134, 1147, 1154, and 1161 are currently winning all bids, and serve together as a program solving arbitrary
instances. The program is simple and intuitive. It first clears blocks off stack 1, putting them on stack 3,
until only correctly colored blocks remain on stack 1. Then, if the next block it needs is on stack 3, it digs
down in 3 to find it, putting all the blocks it removes on 2. Alternatively, if the next block it needs is on 2, it
digs down in 2 to find it, putting all blocks removed on 3.
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Figure 2: Fig (a) shows the number of alive rules and alive agents. Fig (b) shows the moving average, over
the last 100 instances, of the score, computed as � ����� � ��. � . for � ��. � � fraction instances of size . solved.
“Solved” gives score as the system is running, “sampled” gives score on periodic samples where we turn
off new agent creation. In sampled mode, Hayek4 is solving all instances presented (which are up to size
about 158) and is using a program that would solve arbitrary instances. The horizontal axis is in millions
of instances. We are showing the period between 2 and 2.18 million instances where it discovered how to
solve arbitray instances.

This program is embodied in the following rules. The respective agents contain other rules that don’t
fire. We have cleaned some semantically unimportant symbols from the rules for pedagogical clarity.
(1) �5,79 � �5,�� � �5, � � �5,76 � � � � ��� in agent 1147, which bids 7.78.
(2) �5,��
+ � , � � �5,�� � �5,79
+ � � �5, � �8� � � � � in agent 1154, which bids 8.07.
(3) �5, � + � ,79 � �5, � � �5, � � �5,76!+ � , � � � � �
� �

also in agent 1154.
(4) �5, �
+ � ,79 � �5, �
+ � � �5, � � �5, � �8� � � ��� in agent 1134, which bids 8.05.
(5) �5, �)+ � � �5, � � �5,76!+ � � �5, � �8� � � � � ( in agent 1161, which bids 35.8.

These agents work together as follows. Rule 1 always matches. All rules contained by higher bidding
agents in the population match only when stack 1 contains no incorrect blocks, i.e. when every block in
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stack 1 is the same color as the corresponding block in stack 0. Thus, whenever there are incorrect blocks
on stack 1, agent 1147 wins and clears a block from stack 1. This will occur as many auctions in a row
as necessary to clear all incorrect blocks from stack 1. Once stack 1 contains no incorrect blocks, the next
block needed to extend it must be on stack 2 or stack 3. If the next-needed block is on top of stack 2, rule 2
matches (matching y0 to the color of the next block needed) and moves this block to stack 1. Otherwise, if
the next-needed block is on stack 3, rule 3 matches, and moves the top block from from stack 3 to stack 2.
As long as the next-needed block is on stack 3, 1154 wins successive auctions and digs down 3 to find the
correct block. When the next-needed block is not on 3 or on top of 2, 1134 wins the auction, and uses rule
(4) to move blocks from stack 2 to stack 3, until it uncovers the next-needed block on stack 2. Finally, when
stack 1 and stack 0 are identical except for the last-needed block, which is on stack 2, agent 1161 wins with
a bid of 35.8 and applies rule (5), which moves the last block to 1 and says “done”.

Note: (a) this program will solve arbitrary instances. (b) All the agents are profitable: 1147 comes
earliest and bids least, 1134 is always followed by itself or 1154. 1154 loses tiny amounts of money when it
is followed by 1134, but more than makes up for it by being eventually followed by 1161. 1161 is profitable
for any instances with final reward over 35, and so is wealthy in the distribution the system was seeing at the
time this set of agents was winning bids. (d) This particular set of agents is winning auctions at the moment,
but new agents are continually created and the set of agents winning auctions is thus changing as time goes
on. It continues, however, to stably solve instances, sometimes briefly disrupting the universal solver, but
soon reassembling it from available rules. (e) Solution of instances depends on all of the more than 1000
agents in the population having bids in appropriate ranges (so that they don’t interfere). (f) Solution involves
chaining roughly

� � agents to solve an instance with � blocks on the goal stack. (g) The solution is intuitive
and reasonably efficient. For the randomly colored distribution of instances presented, no strategy would be
substantially more efficient. To use substantially fewer actions in worst case (where this algorithm could be
quadratically slow) requires a sophisticated strategy that temporarily stacks incorrect blocks on stack 1.

We have done a few comparison experiments. First, we used the exact same scheme except that we
chose the winning bidder in each auction with probability proportional to bid, as advocated in Zeroth level
Classifier Systems15 (a widely studied CS variant). This breaks property rights, and immediately broke
performance. Such systems solved only problems with about 4 blocks.

Second, we attempted to learn a Post system by a stochastic hill climbing search. We initiated a CBS
(current best solution) as an agent containing the rule �5, � � �5, � � �5, � � �5, � � � ����� � � � ( which solves 1 block
instances. We then iteratively modified the CBS (exactly as described in

�
3), tested the modified solution,

and replaced the CBS with the modified solution whenever the new solution performed better. We used an
instance distribution calculated to work well with this hill climber, presenting instances of a fixed size and
increasing the size by one when the CBS succeeded in solving 80% of the current size. This approach built
a single Post Production agent, without use of the economic framework. The best this approach could do,
after testing several hundred million Post systems, was to produce a Post system that solved about 40% of
10 block problems.

5 Discussion

The success of Hayek4 on Blocks World, coupled with the success of previous Hayek versions using radical-
ly different representations, shows that our economic model is consistently able to assign credit and achieve
deep chaining of agents and solution of hard Blocks World Problems. Control experiments where property
rights are broken, or where no economic structure is used at all, indicate the importance of the property
rights in promoting the evolution of cooperation among modules, dividing and conquering problems that
are far too complex to solve by alternative means. This is the first Hayek version for which the agents are
potentially Turing universal, and accordingly the first to evolve universal solvers from end reward only.
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The present work is the first of which we are aware where a Post system has been trained. The pattern
matching ability of the Post system appears powerful and potentially of wide application. Post rules appear
to have a very different quality from the S-expression representation of Hayek3. S-expression and many
other representations perform numerical computations. The Post system is evolving to match structural
properties of the system that may be difficult to express numerically.

We are currently experimenting to see whether this system can learn to solve Rubik’s cube, and intend
to go on to other applications.
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